

COMPETITOR RESOURCE

Haas Automation is a sponsor of the 2024 SkillsUSA CNC Machining Competitions. We are committed to providing materials for Regional and State competitions throughout the United States for the 2024 CNC Machining Competitions.

In addition, we are providing a list of resources to help prepare students to enter the CNC Machining competitions and the workforce of our industry, feeling wellequipped for success. Please see the following pages for resources or visit our website at haascnc.com.

For Regional and State level SkillsUSA testing materials, please contact the SkillsUSA State Director in your state.

About the Competition:

Regional and State-level CNC Milling Programmer, CNC 2-Axis Turning, CNN 3-Axis Milling, and State CNC 5-Axis Milling Programmer competitions will test two major skills areas (1) a CNC theory test and (2) CAM programming and Oral Professional Development Assessment.

CNC Theory Test:

The CNC theory test is a set of multiple-choice questions closely related to the CNC subject area of focus for the competition, i.e., milling or turning. Competitors must select the best answer that applies, reading each question carefully before choosing an answer. Contestant numbers must be written on the test in the space provided on each page, or the competitor will receive 0 points.

Programming:

The programming portion of the competition will provide competitors with access to a part drawing, STEP model, and Process Plan. It is the competitor's job to use the provided documents to complete a CAM program. If run, the program would produce a machined part that is in accordance with the Process Plan, collision-free, and accurate to the part drawing provided. The drawing will be complete with multiple views making it easy for competitors to visualize the part and understand its geometry. The Process Plan will provide setup instructions, a sequence of operations, and tool data. Contestant numbers must be used as the name for the CAM file. If this step is missed, the competitor will receive 0 points. Remember, save early, save often.

Competitors will be provided with all testing documents mentioned above, but <u>competitors</u> <u>must provide the following items to compete successfully.</u>

- (Required) Laptop or PC with access to CAM software (Mastercam or Autodesk Fusion)
- (Required) Pen or pencil for notes or written calculations
- (Optional) Basic calculator

NOTE: Judges have access to a Theory Test Key and Programming Score Card, which can be used to calculate the appropriate points for the SkillsUSA Regional/State Score Card.

Recommended Competitor Preparation

Set yourself up for success by committing to continuous learning. Haas Automation, and other supporting partners, offer an array of opportunities for everyone to learn about the principles of CNC machining. Get ahead by preparing yourself as a competitor before and after competitions.

Haas Certification Program

These online courses are designed to provide the basic knowledge necessary to get started as a CNC machine operator or CNC machinist. They introduce basic CNC machine operation, proper machine safety, and fundamental machining processes. For more information and to sign-up for the free online courses, visit: <u>https://www.learn.haascnc.com</u>

Haas Programming Workbooks

These programming workbooks provide the basic principles to program Haas Mills and Haas Lathes. Numerous exercises throughout the workbook enable users to build their skills at their own pace. Answer Books are also available. To download, visit the Haas Learning Resources webpage: <u>https://www.haascnc.com/myhaas/Haas_Learning_Resources.htm</u>

Haas Video Library

The Haas Video Library gives you access to thousands of videos recorded specifically to help Haas CNC users everywhere to grow their skills and understanding of CNC machining to maximize their abilities. Access videos directly from the Haas Video Library via the Haas YouTube channel or using the Quick Picklist of the Haas Learning Resources page, which organizes a handful of entry- to advanced-level videos to help get you started. For the complete Video Library, visit:

<u>https://www.haascnc.com/video.html</u> Or, for the shortened Quick Picklist, visit: <u>https://www.haascnc.com/myhaas/Haas_Learning_Resources.html</u>

CAM Programming Training and Software

Partners Mastercam and Autodesk Fusion provide access to software and video training programs. Please visit the links below for information on accessing software and training resources.

Mastercam Learning Content: https://my.mastercam.com/hubs/learning/

Sign up for a free myMastercam account to gain access to free Courses in Core, 2D Mill, 3D Mill, Lathe, Multiaxis, and more.

Free Acoustic Amplifier Project-Based Tutorial: <u>https://signup.mastercam.com/project-part-series-</u> <u>1-amplifier</u>

Mastercam Software Access for SkillsUSA: <u>https://www.mastercam.com/skillsusa/</u> Contact Email: <u>education@mastercam.com</u>

AUTODESK

Autodesk is a proud National Partner of SkillsUSA and a member of the Technical Committee for the CNC Competitions at the Regional, State and National levels. Autodesk is excited to be a part of the 2024 CNC Competition and wish all competitors the best of luck!

Autodesk and SkillsUSA:

Information on how Autodesk can support you in SkillsUSA Manufacturing competitions. <u>https://www.autodesk.in/campaigns/education/skillsusa</u> *If the page doesn't load, please check back soon for updates.

Download Autodesk Fusion:

Autodesk Fusion is an all-in-one integrated CAD/CAM/CAE software that is **free for students and educators**. Available on Mac, PC, and Chromebook. <u>https://www.autodesk.com/campaigns/education/fusion-360</u>

Autodesk Fusion Learning Resources:

Extend your skills with our free courses, featuring self-paced courses, tutorials, and learning modules.

https://www.autodesk.com/certification/learn/catalog/product/Fusion%20360

If you have questions or would like additional support, please reach out to amy.shapiro@autodesk.com

Competitor Instruction:

Theory Test:

Add your contestant number in the space provided. If printed, add the contestant number on each page. For each multiple-choice question, select the best answer that applies. Be sure to read each question carefully before choosing the answer. Write neatly. Make sure your contestant number is on the test before submitting. Questions without an answer receive zero points.

Programming:

Open the STEP model in your CAM software of choice. Save the file using your contestant number in the file name. Use the provided documents (Drawing and Process Plan) to program the model using the information provided (Ex. Stock Setup, Operation Sequence, Tool Data, Feed and Speeds, and WCS). **Save OFTEN.** When done, check the entire program from start to finish, and save. The judged file should resemble a perfect program, which, if run on a machine, would produce a machined part that is accurate to the print and collision-free. Submit your completed program via USB flash drive.

ecimal quiv.	Drill Size	mm	Tap Sizes	Decimal Equiv.	Drill Size	mm	Tap Sizes
0059	97	0.150		.0320	67	0.813	
0063	96	0.160		.0330	66	0.838	
0067	95	0.170		.0350	65	0.889	
0071	94	0.180		.0360	64	0.914	
0075	93	0.191		.0370	63	0.940	
0079	92	0.201		.0380	62	0.965	
0083	91	0.211		.0390	61	0.991	
.0087	90	0.221		.0400	60	1.016	
.0091	89	0.231		.0410	59	1.041	
.0095	88	0.241		.0420	58	1.067	
.0100	87	0.254		.0430	57	1.092	
0105	86	0.267		.0465	56	1.181	
0110	85	0.279		.0469	³ /64	1.191	#0-80
.0115	84	0.292		.0520	55	1.321	
.0120	83	0.305		.0550	54	1.397	
.0125	82	0.318		.0595	53	1.511	#1-64 #1-72
.0130	81	0.330		.0625	1/16	1.588	
.0135	80	0.343		.0635	52	1.613	
.0145	79	0.368		.0670	51	1.702	
.0156	1/64	0.397		.0700	50	1.778	#2-56 #2-64
.0160	78	0.406		.0730	49	1.854	
.0180	77	0.457		.0760	48	1.930	
.0200	76	0.508		.0781	5/64	1.984	
.0210	75	0.533		.0785	47	1.994	#3-48
.0225	74	0.572		.0810	46	2.057	
.0240	73	0.610		.0820	45	2.083	#3-56
.0250	72	0.635		.0860	44	2.184	
.0260	71	0.660		.0890	43	2.261	#4-40
.0280	70	0.711		.0935	42	2.375	#4-48
.0292	69	0.742		.0938	3/32	2.381	
.0310	68	0.787		.0960	41	2.438	
.0313	1/32	0.794		.0980	40	2.489	

DECIMAL EQUIVALENT CHART .0995 – .2969 🛷

.0995	39	2.527		.1875	³ /16	4.763	#12-32
.1015	38	2.578	#5-40	.1890	12	4.801	
.1040	37	2.642	#5-44	.1910	11	4.851	
.1065	36	2.705	#6-32	.1935	10	4.915	
.1094	7/64	2.778		.1960	9	4.978	
.1100	35	2.794		.1990	8	5.055	
.1110	34	2.819		.2010	7	5.105	1/4-20
.1130	33	2.870	#6-40	.2031	¹³ /64	5.159	
.1160	32	2.946		.2040	6	5.182	
.1200	31	3.048		.2055	5	5.220	
.1250	1/8	3.175		.2090	4	5.309	
.1285	30	3.264		.2130	3	5.410	1/4-28
.1360	29	3.454	#8-32 +#8-36	.2188	7/32	5.556	1/4-32
.1405	28	3.569		.2210	2	5.613	
.1406	⁹ /64	3.572		.2280	1	5.791	
.1440	27	3.658		.2340	A	5.944	
.1470	26	3.734		.2344	¹⁵ /64	5.953	
.1495	25	3.797	#10-24	.2380	в	6.045	
.1520	24	3.861		.2420	с	6.147	
.1540	23	3.912		.2460	D	6.248	
.1563	5 _{/32}	3.969		.2500	1/48E	6.350	
.1570	22	3.988		.2570	F	6.528	⁵ /16 ⁻¹⁸
.1590	21	4.039	#10-32	.2610	G	6.629	
.1610	20	4.089		.2656	17/64	6.747	
.1660	19	4.216		.2660	н	6.756	
.1695	18	4.305		.2720	1	6.909	⁵ /16 ⁻²⁴
.1719	11 _{/64}	4.366		.2770	J	7.036	
.1730	17	4.394		.2810	к	7.137	
.1770	16	4.496	#12-24	.2813	9/ ₃₂	7.144	⁵ /16-32
.1800	15	4.572		.2900	L	7.366	
.1820	14	4.623	#12-28	.2950	м	7.493	
.1850	13	4.699		.2969	¹⁹ / ₆₄	7.541	
A.	Tap # Si	zes #5	oove based on ar = .125 #6 = .13 60 = Thread # O	8 #8=.16			12 = .216

Decimal Equiv.	Drill Size	mm	Tap Sizes	Decimal Equiv.	Drill Size	mm	Tap Sizes
3020	N	7.671	31263	.5625	9/16	14.288	5/8-18
3125	5/16	7.938	³ / ₈ -16	.5025	37/64	14.684	5/8-18
3160	0 0	8.026	-/8-10	.5938	19/32	15.081	-/8-24
3230	P	8.204		.6094	³⁹ / ₆₄	15.478	¹¹ / ₁₆ -12
3281	21/64	8.334		.6250	5/8	15.875	/16 12
3320	Q 64	8.433	³ / ₈ -24	.6406	41/64	16.272	11/16-20-11/16-24
3390	R	8.611	/8-x-4	.6563	21/32	16.669	3/4-10
3438	11/ ₃₂	8.731	³ / ₈ -32	.6719	43/64	17.066	74 10
3480	5	8.839	.8	.6875	11/ ₁₆	17.462	³ / ₄ -16
3580	т	9.093		.7031	45/64	17.859	3/4-20
3594	²³ /64	9.128		.7188	23/32	18.256	.4
3680	U .04	9.347	7/16-14	.7344	47/64	18.653	¹³ / ₁₆ -12
3750	3/8	9.525	.10	.7500	3/4	19.050	¹³ / ₁₆ -16
3770	v	9.576		.7656	49 _{/64}	19.447	13/16-20-7/8-9
8860	w	9.804		.7813	25/32	19.844	10 0
8906	25/64	9.922	7/16-20	.7969	51/64	20.241	7/8-14
3970	x	10.084	10	.8125	13/16	20.637	
1040	Y	10.262	7/16-28	.8281	53/64	21.034	7/8-20
1063	13/32	10.319		.8438	27/32	21.431	
130	z	10.490		.8594	55/64	21.828	¹⁵ /16-12
219	27/64	10.716	1/2-13	.8750	7/8	22.225	15/16-10-8
1375	7/16	11.113	-	.8906	57/64	22.622	15/16-20
1531	29/64	11.509	1/2-20	.9063	29/32	23.019	
1688	15/32	11.906	1/2-28	.9219	⁵⁹ /64	23.416	1.0-12
4844	31/64	12.303	⁹ /16 ⁻¹²	.9375	¹⁵ /16	23.813	
5000	1/2	12.700	⁹ /16-18	.9531	61 _{/64}	24.209	1.0-20
5156	³³ /64	13.097	⁹ /16-24	.9688	31/32	24.606	
5313	17/32	13.494	⁵ /8-11	.9844	63/64	25.003	
5469	³⁵ /64	13.891		1.000	1	25.400	

$\begin{array}{llllllllllllllllllllllllllllllllllll$
IPM = FPT x T x RPM MMPR = IPR x 25.40 Feed Per Revolution Distance over Time (in minut FPR = IPM + RPM Feed Per Tooth (in) Time Cutting over Distance ((minutes) FPT = IPM + (RPM x T) (minutes) Metal Removal Rate TCm = L + IPM MRR = W x d x F Time Cutting over Distance ((seconds) Converting IPR to IPM TCm = L + IPM + RPM
FPR = IPM + RPM L = IPM x TCm Feed Per Tooth (in) Time Cutting over Distance ((minutes) PT = IPM + (RPM x T) (minutes) Metal Removal Rate TCm = L + IPM MRR = W x d x F Time Cutting over Distance ((seconds) Converting IPR to IPM TCm = L + IPM x FC
FPT = IPM + (RPM x T) (minutes) Metal Removal Rate TCm = L + IPM MRR = W x d x F Time Cutting over Distance ((seconds) Converting IPR to IPM TCm = L + IPM × 60
Metal Removal Rate MRR = W x d x F Converting IPR to IPM TCo-L IPM x 60
Converting IPR to IPM
INCH METRIC CONVERSION
mm x 0.03937 = in. in. x 25.4 = mm
m x 39.37 = in. in. x 0.0254 = m
$m \ge 3.2808 = ft$ $ft \ge 0.3048 = m$
m x 1.0936 = yd
km x 0.621 = mi mi x 1.6093 = km

4 MACHINIST'S CNC REFERENCE GUIDE

Drill Poir	NT DEPTH & COUNTERSINK Ø
	o depth for a chamfer diameter, h for a required drilling depth:
Drill Point Angle (DPA)	Factor
60°	0.866 x Dia. = Point Depth
82*	0.575 x Dia. = Point Depth
90*	0.500 x Dia. = Point Depth
118*	0.300 x Dia. = Point Depth
120"	0.288 x Dia. = Point Depth
135*	0.207 x Dia. = Point Depth
i.e., 0.250 drill diam	degree drill tip depth, multiply the dia. by 0.3 eter x .3 = 0.075 drill tip depth MFERING or DRILLING banter Dia. Point Depth Drill Point Depth
	MACHINIST'S CNC REFERENCE GUIDE 2

